Примерно в те же годы европейские котлостроительные фирмы, преследуя ту же цель (снижение износа конвективных поверхностей), а также стараясь сократить размеры котельной ячейки, стали выпускать котлы башенного типа, в которых практически все конвективные поверхности нагрева (кроме регенеративного воздухоподогревателя) располагались непосредственно над топочной камерой. Такая компоновка, безусловно, требует существенного увеличения высоты главного корпуса, внутри которого устанавливается котельный агрегат (рис. 1.4,в). Но зато, наряду с уменьшением площади, удается обеспечить равномерное омывание конвективных поверхностей нагрева благодаря отсутствию поворотов, неизбежных при П– и Т-образных компоновках. Кроме того, подъемное движение продуктов сгорания несколько снижает газовое сопротивление. Правда, для мощных котлов башенного типа, сооружаемых в Европе, Японии и Южной Корее в последние годы, пришлось всё же после башенного котла выполнять опускной, свободный от поверхностей нагрева газоход, так как регенеративный воздухоподогреватель, дымосос и газоочистное оборудование могли быть установлены только на нулевой отметке.

Еще один вариант компоновки котельной установки – U-образный котел с топкой инвертного типа (рис. 1.4,г). Такие котлы сравнительно небольшой мощности устанавливали в Европе и США еще в первой половине прошлого века. Верхнее расположение регенеративного воздухоподогревателя позволяло существенно сократить протяженность воздушных коробов до горелок, а факел очень хорошо заполнял топочную камеру. При повышении мощностей котлов всё более ощутимыми становились недостатки такой компоновки: топливо от мельниц приходилось поднимать на большую высоту, а размещение тягодутьевых механизмов и золоуловителей на опорных конструкциях вызывало большие сложности.

В последние десятилетия котлостроительные заводы практически прекратили выпуск таких котлов, но внезапно интерес к ним снова возродился. Дело в следующем. При разработке котлов на ультрасверхкритические параметры с температурой свежего пара и промперегрева 600–700 °С, паропроводы от котла к турбине становятся настолько дорогими, что оправданными оказываются любые усложнения компоновки котла, если их результатом станет сокращение расстояния от выхода из пароперегревателя до стопорного клапана турбины.

Используемое топливо также оказывает влияние на конструкцию котельного агрегата. Так, например, некоторые европейские котлостроительные фирмы при сжигании малореакционных углей (тощих или антрацитов) удачно используют плечевые топки (рис. 1.4,д).

При сжигании твердого топлива в большинстве случаев нижняя часть топки представляет собой холодную воронку, в которой расплавленные в ядре горения золовые частицы охлаждаются до нужной температуры. Такие топки – с твердым шлакоудалением (ТШУ) – используют при сжигании бурых и большинства каменных углей. Но для небольшой группы углей с малым выходом летучих (антрациты и тощие угли) часто применяют топки с жидким шлакоудалением (ЖШУ). В таких топках вместо холодной воронки устанавливают слабонаклонный под. Трубы пода и нижней части топочной камеры покрывают шипами, на которые наносят огнеупорную массу. Всё это приводит к появлению пленки жидкого шлака, образовавшегося из минеральной массы угля. Шлак вытекает через летку в нижней части пода и гранулируется в шлаковой ванне. О целесообразности использования и конструктивных особенностях топок с жидким шлакоудалением подробнее рассказано в последующих разделах.

Газомазутные котлы не нуждаются в холодной воронке: нижняя часть топочной камеры у них представляет собой слабонаклонный под, закрытый экранными трубами. Конструкция конвективных поверхностей нагрева учитывает отсутствие золовых частиц в дымовых газах. Легче решаются проблемы очистки дымовых газов (особенно при сжигании природного газа, когда в топливе отсутствуют серосодержащие вещества).

В конструкции конвективных поверхностей нагрева угольных котлов необходимо учитывать наличие в дымовых газах золовых частиц, которые создают проблемы загрязнения и (или) износа труб пароперегревателя и экономайзера. За пылеугольным котлом обязательно должен быть установлен золоуловитель (например, электрофильтр), а в некоторых случаях – еще и весьма дорогие аппараты для очистки дымовых газов от сернистого ангидрида SO2 и оксидов азота NOx (подробнее – в гл. 11–12).

Для преодоления аэродинамического сопротивления конвективных поверхностей нагрева, а также аппаратов для очистки дымовых газов, котельная установка оборудуется дымососом (или дымососами). Исключение составляют только небольшие водогрейные котлы башенного типа, работающие обычно на природном газе. У таких котлов (типа ПТВМ) эвакуация дымовых газов из топочной камеры осуществляется за счет самотяги (рис. 1.5).

Котлы тепловых электростанций и защита атмосферы - i_005.png

Рис. 1.5. Компоновка модернизированного котла ПТВМ – 100М: 1 – пакеты из мембранных панелей; 2 – пакеты из труб с наружным спиральным оребрением; 3 – экраны мембранные; 4 – горелки (6 шт.); 5 – вентиляторы; 6 – газопроводы рециркуляции

Но в крупных энергетических котлах, даже при использовании башенной компоновки, преодолеть аэродинамическое сопротивление котла и очистного оборудования удается только с помощью мощного дымососа, который подает продукты сгорания к дымовой трубе.

Глава 2. Органическое топливо и особенности его использования на тепловых электростанциях

2.1. Состав и основные характеристики органического топлива

Первичным источником энергии, который используется на тепловых электростанциях, является ископаемое топливо органического происхождения. Горючие вещества, входящие в состав топлива, – углерод С, водород Н и сера S (за исключением небольшой части серы, содержащейся в минеральной массе топлива – сульфатная сера). Кроме горючих веществ, в состав топлива входят кислород О (поддерживает горение, но теплоты не выделяет) и азот N (не участвующий в реакциях горения инертный газ). Кислород и азот иногда называют внутренним балластом топлива, в отличие от внешнего балласта, к которому относят золу и влагу.

Зола (обозначается буквой «А») – это минеральная часть топлива, включающая оксиды кремния, железа, алюминия, а также соли щелочных и щелочноземельных металлов.

Влага топлива (W) подразделяется на внешнюю и гигроскопическую. При длительном хранении твердого топлива в сухом месте оно теряет внешнюю влагу и становится «воздушно-сухим».

Таким образом, если какое-то количество топлива принять за 100 %, то можно записать:

Cr + Hr + Or + Nr + Sлr + Ar + Wr = 100 %. (2.1)

Индекс «r» в этом уравнении обозначает, что речь идет о рабочей массе топлива, полученного на электростанции (за рубежом обычно говорят не «рабочее», a «as receive», то есть «полученное» топливо).

Исключая из рабочего состава всю влагу, можно получить:

Cd + Hd + Od + Nd + Sлd + Ad = 100 %. (2.2)

Индекс «d» в этом уравнении обозначает «dry», то есть «на сухую массу».

Если пойти еще дальше и исключить золу (точнее – минеральную массу), то можно получить состав горючей массы топлива:

Cdaf + Hdaf + Ndaf + Odaf + Sлdaf = 100 %. (2.3)

Индекс «daf» в этом уравнении обозначает топливо – «dry ash free», то есть «сухое и свободное от золы».

Loading...